Generalized stacking fault energy of carbon-alloyed paramagnetic $ \gamma $ -Fe
نویسندگان
چکیده
منابع مشابه
Generalized-stacking-fault energy surface and dislocation properties of aluminum
We have employed the semidiscrete variational generalized Peierls-Nabarro model to study the dislocation properties of aluminum. The generalized-stacking-fault ~GSF! energy surface entering the model is calculated by using first-principles density functional theory ~DFT! and the embedded-atom method ~EAM!. Various core properties, including the core width, dissociation behavior, energetics, and...
متن کاملGeneralized stacking fault energy surfaces and dislocation properties of aluminum
We have employed the semidiscrete variational generalized Peierls-Nabarro model to study the dislocation core properties of aluminum. The generalized stacking fault energy surfaces entering the model are calculated by using first-principles Density Functional Theory (DFT) with pseudopotentials and the embedded atom method (EAM). Various core properties, including the core width, splitting behav...
متن کاملAb initio simulation of alloying effect on stacking fault energy in fcc Fe
The effect of 3d and 4d transition metal (TM) additions on the intrinsic stacking fault energy (SFE) in fcc Fe is studied to elucidate the role of alloying in the deformation mechanisms in austenitic steels. The results of ab initio calculations reveal that only Mn reduces the SFE, stabilizing the local hcp structure, whereas all other d-additions are expected to decrease the hcp? fcc transform...
متن کاملThe magnetic response of paramagnetic Fe at high energy transfers
2014 Previous measurements in paramagnetic iron using polarized neutrons with polarization analysis revealed strong forward magnetic scattering. By contrast, the scattering at large wavevectors, was observed to be very weak. We report on additional measurements near the zone boundary, which extend to energy transfers of about 2 Tc (~ 200 meV). A value of 1.7 03BC2B is obtained, and the resultin...
متن کاملGeneralized-stacking-fault energy and twin-boundary energy of hexagonal close-packed Au: A first-principles calculation
Although solid Au is usually most stable as a face-centered cubic (fcc) structure, pure hexagonal close-packed (hcp) Au has been successfully fabricated recently. However, the phase stability and mechanical property of this new material are unclear, which may restrict its further applications. Here we present the evidence that hcp → fcc phase transformation can proceed easily in Au by first-pri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Condensed Matter
سال: 2018
ISSN: 0953-8984,1361-648X
DOI: 10.1088/1361-648x/aaf2fa